
AD-A238 488

NAVAL POSTGRADUATE SCHOOL
Monterey, California

STAT s S LECTE
JUL T 191

~THESIS

ADAPTIVE LOGISTICS SUPPORT
FOR

COMBAT

by

Rogerio G. Silveira

September, 1990

Thesis Advisor: Donald P. Gayer

Approved for public release; distribution is unlimited.
I.

/ 91-049171111 11111 11li ii11111l1111 111lii 111___l _________ ______

/ 91 12 V%



Unclassified
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
1 a. REPORT SECURITY CLASSIFICATION 1 b. RESTRICTIVE MARKINGS
Unclassifed
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE

4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION
Naval Postgraduate School (if applicable) Naval Postgraduate School

6c, ADDRESS (City, State, and ZIP Code) 7b ADDRESS (City, State, and ZIP Code)
Monterey, CA 93943-5000 Monterey, CA 93943-5000

Ba NAME OF FUNDING/SPONSORING 8b OFFICE SYMBOL 9 PROCUREMEN1 INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)

8c. ADDRESS (City, State, and ZIP Code) W0 SOURCE OF FUNDING NUMBERS

P1wgrdm tlcmrtnt NOG proi't NOx 1,35K NO Work unitf ACCeSIlon
Number

I1I TITLE (include Security Classification)

ADAPTI VE LOGISTICS SUPPORZTFORt COM BATI

12. PERSONAL AUTHOR(S) Rogerio G. Silveira

1 3a. TYPE OF REPORT 1 3b TIME COVERED 14DT FRPORT (year, month, day) 5i PAGE COUNT
Master's 1'he'sis From To 190 rpi.1m 92
16, SUPPLEMENTARY NOTA I iOt
The views expresbed in thib tlmi~ia rt thubt! u thea.uthur cdud du nut relatt the UIIiaadi'l lIk)11. .01 jlol~ititsii 1 kim D4a I)"I LAI'. i 'I Alleis 'in1- tile U. S.
Government.
17 COSATI CODES 18 SUBJECT TERMS (continue on reverse if necessary and identify by block number)

FIELD I GROUP S1 SBGRO1JP Di )ffision Approximaion, Combat it.gistzs, Cannibalizatiull, A% alability.

19. ABSTRACT (continue on r everse if necessary and identify by block number)

The transient behavior of combat logistics support sy stemb is analyzed. Comil.tvailability is definivd as the
number of active combatant platforms being supported by a single fault diegiwsisand repair facility. Heavy trallic
conditions inherent to intense combat periods allow the use of diffusion approximation models, which prov ide specedy
solutions used to compare adaptive scheduling policies to a!standard First-Come, First-Serve policy. The adequacy of
these models is invest:gated arid numerical Sol utions are compared to simulation results . The case in which failed
modules require a degree of support that is beyond the capability of local maintenanict; is also investigated for both
pro- and post local-repair relocation to distant repair. The use of cannibalization in short-term situations is shown to
have a dramatic effect in terms of combat availabilit). A preliminary model for a nion -can niba lization policy is also
developed Optimization modcls for choosing spare parts allocation, within budget constrdints, or for achieving
required operational availability with minimum cost are described.

M UtJCtASSfFIED/tJNLIMITED SAME AS REPORI EJ onc ustifis Unclassified

DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted SEW.RITY CLASSIFICATION OF THIS PAGE
All other editions are' obsolete Unclassified

i



Approved for public release; distribution is unlimited.

Adaptive Logistics Support

for

Combat

by

Rogerio G. Silveira

Lieutenant, Brazilian Navy
B.S., Brazilian Naval Academy

Submitted in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE IN OPERATIONS RESEARCH

from the

NAVAL POSTGRADUATE SCHOOL

September 1990

Author:
Roero Silveira

Approved by: _ _ _ _ _._

Donald P. Gaver, Thesis Advisor

William B. Gragg, Sec der

Peter Purdue, Chairman

Department of Operations Research

ii



ABSTRACT

The transient behavior of combat logistics support systems is analyzed.

Combat availability is defined as the number of active combatant platforms being

supported by a single fault diagnosis and repair facility. Heavy traffic conditions

inherent to intense combat periods allow the use of diffusion approximation models,

which provide speedy solutions used to compare adaptive scheduling policies to a

standard First-Come, First-Serve policy. The adequacy of these models is investigated

and numerical solutions are compared to simulation results. The case in which failed

modules require a degree of support that is beyond the capability of local

maintenance is also investigated for both pre- and post-local-repair relocation to

distant repair. The use of cannibalization in short-term situations is shown to have

a dramatic effect in terms of combat availability. A preliminary model for a non-

cannibalization policy is also developed. Optimization models for choosing spare

parts allocation within budget constraints, or for achieving required operational

availability with minimum Cost are described.
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I. INTRODUCTION

A. THE NATURE OF THE PROBLEM

At important times in military operations, especially during intense conventional

combat periods, the problem of maintaining the readiness and operational availability

of combatant units is of great relevance. Usually the available repair facility is

restricted in terms of diagnosis and/or maintenance capability, since it also

constitutes part of the deployed group. Thus a detachment unit is expected to operate

as successfully as possible for a certain period of high activity, during which relatively

many equipment failure events are likely to occur. The purpose of this thesis is to

show how the desired availability can be enhanced.

As an example, one can imagine a Carrier-based Air Unit the aircraft of which

experience diverse failures of different mission-essential modules; the failures can be

either total or partial. A total failure indicates that the original parts inventory may

be depleted permanently with the removal of these components from service, while

partial depletion signifies that these failed modules are repairable: they can either

be immediately served or else join a queue for future sei-vice. Also, there is the case

in which a failed component arriving at the initial diagnosis station, even if not

rendered completely useless, is indicated to require a degree of support that is

beyond the capability of local maintenance ("BCM"). The alternative may be to send

this failed module to other maintenance levels, with consequent transit and repair

I



times uncertainty being introduced. Because of the delays involved it is clearly

important to identify as BCM only those failed components that truly need the

distant service.

A basic and important operational problem can be summarized as follows: how

to determine a good schedule for repairing failed modules in order to maximize

combat availability, subject to various resource restrictions? Usually there is no

fundamental reason for servicing failed units in the order in which they fail ("First-

come,First..serve" policy), although it is natural and superficially "democratic" or "fair"

to do so. Other service policies, allowing for queue length influence, may very well

grant increased system availability as a function of time, defined as the total number

of operational units "up" at any time t.

This thesis develops and exercises various mathematical models for evaluating

scheduling and spares stockage rules in a transient dynamic combat environment. It

is very important that adaptive combat logistics support models have the ability to

produce a description of transient behavior, since a steady-state situation may never

be achieved. It -s also desirable to get a solution for both the mean number of

components in the system at each time t and the variances as well, since this

knowledge will permit the use of various measures of effectiveness which are closer

in meaning to standard definitions of availability, i.e., the probability that the number

of available units, e.g. carrier-based aircraft, exceed a pre-specified value at each

time t.
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In this study operational units will be referred to as aircraft, and modules may

be considered as being major avionics components, distinct in each aircraft, but

assumed to be essential to the operation. It is important not to let the generality of

the problem be obscured by these considerations.

Stochastic models for these distributed logistic systems have been derived and

verified via simulation for situations such as one server at the repair facility, and

Markovian failure and repair times. These analytical models may be employed as

tools to analyze the effect of different service disciplines, instead of the exclusive use

of time-consuming and large computer-intensive simulation techniques, such as

DYNAMETRIC, a package used at RAND Corporation. It is emphasized that the

development of the present analytical modeling methodology is in its infancy, and

that DYNAMETRIC remains a standard valuable tool.

B, DEFINITIONS

Mathematical definitions and formulati'ns follow.

Let the index i identify each of the different types of components to be

considered; i = 1,...,L The Aircraft Unit, together with its base of operation, deploys

with K, components of type i, considering components effectively installed in the

aircraft plus any spares to be kept on base, e.g. in the Aircraft-Carrier local parts

inventories, to replace those completely lost through attrition or to keep the aircraft

operational while failed components undergo repair or wait for service. K may

3



actually change over the period of combat as some items permanently fail but others

are added.

A local maintenance shop is available to provide service/repair for failed

components. It is assumed that components have independent exponential failures

at constant rate X, and that times to repair are also independent exponential with

rate v,; our methods will actually accommodate time-dependent Xi and vi. The single

repairman at the repair shop "sees" arrival rates of failed components which are

equal to individual failure rates multiplied by the total number of items operating at

each particular time. This number is, obviously, the number of aircraft actually

operational at that time. At any time, t let N(t) be the number of components of type

i waiting in queue or being serviced.

Let AC be the number of aircraft initially deployed, and let Av(t) denote the

number of operational (i.e., available) aircraft at time t. Av(t) is defined by

A;Xt) = mfro {A,,K, - NI(t), K2 - N2(t),..., K,- Nz~t)} )11

As defined earlier, the time-dependent failure rate of each type of component,

as seen by the repairman, is equal to X.A-v(t), for i = 1,2,...,.. At each time, t there are

Ki - Ni(t) components of type i available for use. The definition of AV(t) in (1.1)

follows from the fact that the least available item determines the total availability of

operational aircraft, if less thanA. Note that in this formulationAc can be a function

of time if attrition due to combat is considered.
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Equation (1.1) assumes that only one item/module of each type is installed in

each of the AC aircraft, and that cannibalization is allowed, i.e., an inactive (due to

failure in component type j) aircraft may be removed from its working components

in order to permit another unit, which suffered a failure of a different component,

to return to active status.

Another assumption that will be needed later is that the system is in heavy

traffic, i.e.,

J> I (1.2)

This assumption appears to be very realistic for most deployments, specially in

a real combat situation.

Considering now the repairman side of the problem, it seems clear that it is

costly, in terms of time, to switch from the component being currently repaired to a

new oane before service termination and, consequently, the service strategies to be

considered will determine the next component to be serviced (to completion) at the

momneit of the previous service completion. Of course if a server incumbent is not

finished for an extraordinarily long time it may well be desirable to interrupt its

service and sub--titute another now more vital item. Rules for such a substitution are

not evaluated in this thesis. It is clear that under some circumstances such procedures

can be useful adaptations.
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C. GOALS AND SCOPE

The present work attempts to exploit stochastic models developed for similar

systems, as well as to perform initial sensitivity analysis with respect to certain tuning

parameters.

Monte Carlo simulations are employed as validation tools, and particularly

extreme numerical examples are investigated so as to build understanding of the

capabilities of this approach.

Also, as mentioned earlier, the original models are augmented in order to be

able to consider the possibility of module failures which are "beyond the capability

of maiatenance". The objective is to show that, with small modifications, these

models are capable of providing adequate approximations for the somewhat more

realistic "BCM" problem.

The effect of not using the cannibalization policy is investigated via a simulation

model, and a modification to the analytic model is proposed to account for this

change in strategy.

Finally, an optimization model is proposed, allowing for considerations of

limited resources and for the need of quick allocation of such resources to spares for

the various modules, accounting for the effect of following an adaptive repair

scheduling policy, so as to maximize overall system availability.
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II. REVIEW OF EXISTING MODELS - BACKGROUND

M 4odels have been developed to analyze the transient behavior of simlar

systems with respect to the selection of a particular service policy. Initially, a natural

choice for a Measure of Effectiveness ("MOE") is given by the expected number of

aircraft available at time t, E[A(t)], (1.1) or, nearly equivalently, by the set of

expected values of available modules of each type, E[K - Nj(t)], i= 1,2,...,L

A. SIMULATION

Several maintenance policies have been compared in a previous work by Latta

[Ref. 1]. Simulation was employed to study six different repair policies going from the

original First-Come, First-Serve ("FC,FS") scheme to what can be called Least

Available Item Next ("LAIN") policy. This last scheduling strategy determines service

priority based on the current availability of all types of components, and in which the

repairman, after scanning inventory levels (if any), re-orders components in the

service queue to favor those with the lowest operational stock level. If all initial

stocks are completely depleted at any time t, the component type with lowest value

of Ki - Ni(t) is chosen to be serviced next.

Latta demonstrated that the LAIN policy yields considerable improvement in

terms of mean number of available aircraft over all other considered policies.

7



A clear disadvantage of the simulation technique for exploring our model

implications is the intensive requirement for computer usage inherent in the

straightforward Monte-Carlo simulation approach. It seems prohibitively costly, if not

entirely impractical, to employ these models in a optimization context, for example,

or in cases where imprecisely determined parameters for failure and repair times

indicate the need for some kind of dynamic assessment of uncertainty in these

parameters, such as by "bootstrapping". Real problems involve aspects of both of the

issues; this paper has something to say about each.

B. STOCHASTIC MODELS

1. Definitions

Diffusion processes are particular cases of Gaussian processes with

continuous sample functions, and were originally used to model physical phenomena,

e.g. the motion of small particles of gas. The Brownian Motion (or Wiener process)

{Wt , t.0} is the most elementary example of a diffusion process, having zero drift

(or infinitesimal mean), and diffusion parameter (or infinitesimal variance)

independent of W. It is the continuous time version of a random walk.

A diffusion process {Xt , t_0} satisfying the stochastic differential equation

dX,= -pX, + adW, , X 0 =c ; p,o>0 (9.1)

is called an Ornstein-Ublenbeck process. This stochastic process was first used to

directly model the velocity of a particle subject to elastic forces. In this case, the drift

8



parameter reflected a restoring force proportional to the distance, and directed

towards the origin.

For a complete treatment of diffusion processes see, for example, Karlin

and Taylor [Ref. 2]. Arnold [Ref. 3] examines the multivariate stochastic differential

equations for the Ornstein-Uhlenbeck process, and gives general results for the mean

and covariance of X in (2.1).

2. Air Unit Detachment Model and Related Work

Several papers have discussed the use of diffusion processes as an

approximation for job-server systems under heavy traffic. See, for example, Gaver

and Jacobs [Ref. 4], Gaver and Lehoczky [Ref. 5 and 6] and Iglehart [Ref. 7].

Gaver and Jacobs [Ref. 4] developed diffusion approximation models for

computer systems with processor-shared service disciplines. .Gaver and Lehoczky

[Ref. 6] studied a repairman problem with two types of repair. Pilnick [Ref. 8]

extended these models to account for multiple types of queues and service priority

proportional to a function of queue length and modeled the Air Unit detachment

problem directly. Ga,,er, Isaacson and Pilnick [Ref. 9] exploit these models and

presented various applications. The results are summarized here.

a. Processor-sharing Adaptation

If we define qi(N(t)), where N(t) is the vector with components N(t),

as the proportion of time jobs of type i are served by the processor, we can view

9



qi(N(t)) as the probability that the processor (server) will select job i for service just

after each time slice, when a departure takes place in that time slice of length dt.

In order to derive mathematical models for the actual Air Unit

problem, q,(N(t)) is used to represent the probability that, after service completion

at time t, a module of type i is selected for being serviced next. In this case, it turns

out that qi(N(t)) is, in fact, a function of N(t) and A (t), i.e., it depends on the queue

sizes and the operational (combat) availability. In fact, qi(N(t)) is a decision variable,

subject to determination by the scheduler. For notational simplicity, denote q,(N(t))

by qi(t).

b. Diffusion Approximation - The Air Unit Detachment Problem

Pilnick [Ref. 8:p.143] showed how the following system of stochastic

differential equations can be obtained:

dNi(t) = XiAv(t) dt - vipi(t) dt

+ X.Av(t) + vipi(t) ( + 2pi(t) Ivi - 11 ) dWi(t)
1 { }j vj

where {Wi(t), t>_O} are independent standard Wiener processes, N(t), i = 1,2,...,1 are

continuous approximations of the actual discrete processes, and

pi(t) = C EW' qi(t)
Pi

where C is a normalization constant depending on the specific form of pi(t), and

w, > 0 denote arbitrary scalars representing weights for items of type i; see Chapter

III-A below.

10



Assume that the system is large, for example let a =A, + Z.K ,A c =a.a,

K=a.q,, and jLi=a.v are constants. Define fli(t)=N(t)/a, where #,(t) approaches a

deterministic function of t representing the scaled mean of N(t), as a-'O.

Consider the normalization/approximation

Xi(t) - Ni(t) - a Pi(t) (2.3)

(1) Expected Values. If we define dNi(t) as the increment N(t+dt)-

Ni(t) and express it in terms of transformations similar to those in (2.3), it can be

shown (see Pilnick [Ref. 8]) that the following system of I ordinary differential

equations can be derived for fli(t), i= 1,2,...,:

dp1(t) - Xiav(t) - pipi(t) (2.4)
dt

where av(t) is a scaled version of Av(t) in (1.1), i.e.

av(t) = min {a, a1 - P1(t),..., a, - 11(t)} (2.5)

and qi(t) are smooth functions chosen to be a representation of service policy.

Different definitions for qi(t) will be described in Chapter MII.

(2) Variances. A scaled variance-covariance matrix of Ni(t), 2(t) can

be also defined through a system of 1M ODE's. Following the notation in Pilnick

[Ref. 8, pp. 85,147], let



011(t) 012(t) ... 011(t)

EW 2'U2) '022(t) ... 021(t)

011(t) 012(t) ... 011(t).

be the variance-covariance matrix of N(t) scaled by (2.3). The equations for the

elements of 2(t) are

doi(t) - B2ii(t) + 2 E HU aoi(t); (2.6)
dt j.1

and, for i4j,

dot) - [ Hik(t) ojk(t) + Hjk(t) aik(t)] (2.7)dt k.1

Here, H(t) is the IxI matrix

. =H(t) , if j s(t)

H°(t) =[H.(t) - X,, if j = s(t)

s(t) = argmin { eel - i(t), ., - fi(t) ] , with

Hil(t) v - pq y pi(t) ( I -pi(t)) (2.8)
i + p i(t)

and, for i t ],

12



j+P pj(t)pjt 29

The scalars , p and - are determined by the choice of the service policy, as we will

see in Chapter III.

B2(t) in (2.6) is the x diagonal matrix with elements

B 2 (t) =jav(t) + ptip(t) (I + 2pp(t) ( j(t) 1})

13



III. ADAPTIVE SUPPORT LOGISTICS

Chapter II introduced the general analytic expressions for the mean and the

variance-covariance function of an approximation to N(t), valid for a large system

("large" suitably defined) in heavy traffic. In this chapter, adaptive scheduling policies

are studied, and compared to a standard FCFS policy. The accuracy of the diffusion

approximation is verified in various numerical examples by comparison with results

of Monte Carlo simulations. The behavior of the analytic models with respect to

certain tuning parameters is demonstrated in cases showing wide variation of repair

and failure rates. Under suitable conditions the analytical approximation is in

excellent agreement with simulation, and is conducted in a fraction of the computer

time required by present simulations; see below.

Most of the numerical solutions of the differential equations were obtained on

an IBM 3033/4381 computer at the Naval Postgraduate School using the IMSL

(Release 10) package's ODE solvers with either Adam's method or Gear's stiff

method (backward differentiation formula). All codes were written in such a way that

immediate translation to PC-FORTRAN is possible.

All simulations were carried out on the IBM 3033/4381 mainframe, using the

LLRANDOMII random number generator package [Ref. 10]. Certain relevant details

of the simulations are provided when necessary in the next sections.

14



It should be mentioned that, for 1000 replications, the time spent in the

simulation models was, on average, on the order of eight minutes, while the

numerical solutions of the differential equations usually took approximately one

second for the examples under study.

A. MODELING ADAPTIVE POLICIES

As was mentioned in Chapter II, in the diffusion approximation model is

essential to characterize the availability and queueing behavior induced by a

scheduling policy represented by the choice of qiQ). Pilnick [Ref. 8] describes fairly

general expressions for qi(t) that can be useful for modeling several service policies.

Put simply, let

pi(t) = wi qi(t) / pi(
wjqj(t) (3.1)

where q(t) is the "probability" (a relative measure) that an item of type i is selected

for service next, if the previous service is completed at t. The following fairly general

form of qi(t) incorporates a plausible definition for the parameters p, -f and &i in

(2.8) and (2.9):

15



q1(t) = i + p Pi(t) P
% + p t) (3.2)

J

The actual numerical values assigned to the parameters will depend upon the

selection of the scheduling policy. For our present purpose, two forms for qi(t) are

investigated.

1. First-Come, First-Served (FCFS)

A technique to model this common policy is to suppose that the probability

of choosing a module of type i for being serviced next is proportional to N#(). In this

case we must put p = 1, -f = 1 and ej = 0 and (3.2) becomes

f)i(t)q (t -,(3.3)

j

2. Least Available Item Next (LAIN)

Gaver, Isaacson and Pilnick [Ref. 9] devised the term "anti-availability"

of a module i to characterize the quantity (K-N(t))"1. If qi(t) is defined as

qi(t) [ai- Pi(t)] (.4
1e [j- Pj

(t) ] p

where p is a large integer (e.g., 10 - 40), then (3.4) is an attempt to emulate a

deterministic choice of the module with largest anti-availability. This present form

of qi(t) implies that we must have c=-1, -y=-p and ei=a in (3.2).

16



a. Sensitivity Analysis

It turns out that the selection of the tuning parameter p in (3.4)

influences the accuracy of the diffusion approximation, depending upon the range of

values for failure and repair rates.

In this section two hypothetical cases are examined: the first (Case 1)

exhibits comparable values for the rates and it is demonstrated that low values of p

yield good precision; the second case (Case 2) illustrates the fact that a larger value

of p must be used when the rates vary considerably. For both cases in this section,

14C = 50 and I = 10, and no spares are provided. It is assumed that we are interested

in evaluating combat availability for missions of duration up to T= 100 (e.g., days).

Simulation results are used to establish the basis for comparison.

Here, as well as in all numerical examples for the LAIN policy in this thesis, the

simulation model chooses the actual least-available module for service next as it

moves along the sample path in each replication. The analytical method represents

a probabilistic selection, but one that with near certainty picks the least available

item for repair.

17



(1) Case 1. Table 3.1 displays the input data for the first case.

Failure and repair rates are given with respect to a "standard" time unit (e.g., days).

Table 3.1 CASE 1 INPUT DATA

[MO I 1  I xi .I
1 50 0.020 5.0

2 50 0.021 5.0

3 50 0.022 5.0

4 50 0.023 5.0

5 50 0.024 5.0

6 50 0.025 4.5

7 50 0.026 4.5

8 50 0.027 4.5

9 50 0.025 4.5

10 50 0.020 4.5

In Figure 3.1, computed values for E[A,(t)] are plotted for

several values of p. Simulation results are the actual mean values of aircraft

availability at each t. Analytical solutions are computed at each time t according to

the formula

E[Av(t)) = min {A,,K - a.p(t), ... ,K,- a.p1(t)}. (3.5)

Formula (3.5) is correct to order a only; in practical terms it does not recognize the

random variability of K-N,(t). Note that, at all t values examined, there is fairly good

agreement between simulation and analytical solutions, even for small values of p.
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Figure 3.1 Case 1 Availability

(2) Case 2. Table 3.2 shows that failure and repair rates for Case

2 present much higher variation. As in Case 1, the sample system comprises A,=50

aircraft having each I= 10 vital modules. All aircraft have exactly one module of each

type installed.
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Table 3.2 CASE 2 INPUT DATA

[ Ui I IK'
1 50 0.005 5.0

2 50 0.005 5.0

3 50 0.005 5.0

4 50 0.005 5.0

5 ,0 0.005 5.0

6 50 0.009 2.5

7 50 0.011 2.5

8 50 0.013 2.5

9 50 0.015 2.5

10 50 0.025 2.5

As Figure 3.2 depicts, the choice of the parameter p now

more strongly influences the accuracy of the analytical solutions. Note that p 30 is

required to obtain a good approximation in this case,

The importance of these initial results is that the user of the

present analytical models should be aware that the selection of the appropriate

tuning parameter is not case-independent. A reasonable implementation of these

analytical models should consider a pre-verification of rate ranges before assigning

the value of p. For techiiical reasons, however, it is desirable to make p as small as

possible.
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Figure 3.2 Case 2 Availability

B. NORMALITY ANALYSIS

An important result involving the diffusion approxdimation for large systems

under heavy traffic conditions (1.2) is that N(t) in (2.2) is approximately multivariate

normal with mean aP(t) and variance-covariance matrix al(t). Consequently, K-N(t)

must be also normal with mean K - aP~t) and the same variance. Here P~t) is the

vector with components P,(t), i= 1.... 
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Pilnick [Ref. 8, p.100-102] applied classical statistical analysis to the simulation

data and demonstrated that the normality assumption appears to bold for particular

transient times, as well as for the steady-state phase. In this section, alternative non-

parametric methods are employed to verify the normality theory for the complete

mission period.

1. Methodology

If the hypothesis of normality holds for Av(t), then the 5
th and 95th

percentiles of the distribution of Av(t) are approximately

'p.05 = E[Av(t)] + z.05 x Var[Av(t)] (3.6)

9.95 = E[Av(t)] + z.95 x /Var[Av(t)]

where zf is the ath quantile of a standard normal distribution.

Values of E[Av(t)] and Var[Av(t)] can be computed by simulation and,

importantly, also by an analytical-numerical method, and (3.6) can be used to

calculate p.0s and p.s. Now suppose samples of size n =1000 (i.e., 1000 replications

in the simulation) are generated. If the 5 0th and 9 50th sample order statistics are

stored for each time t, then, under the normal hypothesis, it is presumed that these

values will approximate the theoretical numbers.

2. Numerical Results

The sample system represented by Case 2 above is used as a numerical

example. Figure 3.3 displays the mean value of Ap(t), the theoretical percentiles
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computed by (3.6), and the corresponding sample order statistics. Note the jumps in

the order statistics, denoted by A(50) and A(950) in the plot. This is explained by the

fact that they are integer values, representing actual aircraft availability at t for a

particular replication. It is clear that the agreement is very satisfactory, confirming

the usefulness of the normal model approximation. It thus becomes attractive to

compute the probability that the number of available aircraft at time t is less than

or equal to x by use of a normal approximation.

LAIN Policy

Mean5

UCL

A(50)

35- A(950)

30

20 10' 0 - SO 40 5 60 70 80 00 100

Figure 3.3 Test for Normality

C. CASE STUDY

In Table 3.3 input data for a particular system are presented. This example is

taken from Gayer, Isaacson and Pilnick [Ref. 9], who analyzed the effect of different
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stockage patterns using the analytical formulation. Once more, failure and repair

rates show large variation. The objective in this section is to :eproduze the analysis

of the relative performances of the adaptive (LAIN) and FCFS policies, using

simulation and analytical techniques.

Table 3.3 CASE STUDY INPUT DATA

MODULE K, _______.,
1 50 0.050 5.0

2 50 0.040 5.0

3 50 0.030 5.0

4 50 0.020 5.0

5 50 0.010 5.0

6 50 0.009 2.5

7 50 0.008 2.5

8 50 0.007 2.5

9 50 0.006 2.5

10 50 0.005 2.5

Several modifications to the original set-up are introduced and the consequent

effect on aircraft availability is analyzed. For all cases, simulation (S) and analytical

(A) results are tabulated for both policies. These results are the mean values

(E[AV]), standard deviation (SDEV), and the 5th and 95th percentiles (95% CI) of

the distribution of Av(t). Appendix A reproduces these results in graphic form; for

each case that is analyzed in this section, plots are provided for comparative
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performance for the two policies, as well as probabilistic limits for the actual

availability using both simulation and analytical formulations.

In this sample case there are initiallyA, = 50 aircraft. For the LAIN policy, the

"anti-availability" parameter p is set to 30 in (3.3). Table 3.4 exhibits the resulting

combat availability for each policy when no spares are provided, i.e., K=50,

i= 1,2,...,10 (Case A).

Table 3.4 COMPARATIVE PERFORMANCES (CASE A)

FCFS-S FCFS-A LAIN-S LAIN-A

t E[AV] SDEV E[AV] SDEV E[AV] SDEV E[AV] SDEV

10 38.57 2.97 39.27 3.31 43.38 2.10 43.18 2.55
20 32.32 3.28 32.76 3.78 40.22 2.06 40.31 2.51
30 28.66 3.63 28.81 3.89 38.01 2.13 38.13 2.40
40 26.43 3.58 26.42 3.90 35.92 2.13 36.30 2.30
50 25.19 3.65 24.95 3.90 34.36 2.10 34.71 2.21
60 24.06 3.43 24.08 3.89 33.03 1.96 33.32 2.14
70 23.47 3.60 23.54 3.89 31.81 1.85 32.10 2.07
80 22.93 3.70 23.22 3.89 30.90 1.86 31.03 2.02
90 23.00 3.71 23.02 3.89 29.90 1.92 30.08 1.97
100 22.50 3.67 22.91 3.89 29.09 1.89 29.23 1.92

95% CI 95% CI 95% CI 95% CI
10 43.46 33.681 44.72 33.821 46.85 39.911 47.39 38.97
20 37.73 26.911 38.99 26.531 43.62 36.831 44.45 36.18
30 34.65 22.671 35.23 22.391 41.52 34.491 42.09 34.17
40 32.34 20.511 32.86 19.981 39.44 32.411 40.09 32.51
50 31.21 19.161 31.38 18.521 37.83 30.891 38.36 31.06
60 29.72 18.391 30.50 17.651 36.26 29.811 36.85 29.79
70 29.40 17.541 29.96 17.131 34.86 28.771 35.52 28.68
80 29.03 16.821 29.63 16.811 33.96 27.831 34.35 27.70
90 29.12 16.871 29.44 16.611 33.06 26.731 33.32 26.83
100 28.55 16.451 29.32 16.491 32.04 26.131 32.40 26.06
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As it was expected, the LAIN priority policy achieves larger average values for

combat availability at all times. Note, also, that the adaptive scheme induces lower

variances than does the simple FCFS policy. It should be noted especially that the

diffusion approximation results match those from the simulation quite accurately. At

least for this example the standard deviations derived using analytical method (A) are

slightly larger than those from simulation (S). If this slightly conservative bias prevails

it is a desirable situation.

In Case B one attempts to increase combat availability by providing two spares

for each module. Table 3.5 displays the results for Case B.
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Table 3.5 COMPARATIVE PERFORMANCES (CASE B; 2 SPARES)

FCFS-S FCFS-A LAIN-S LAIN-A

t E[AV] SDEV E[AV] SDEV E[AV] SDEV I E[AV] SDEV

10 39.89 3.17 40.53 3.39 45.03 1.96 44.65 2.65
20 32.95 3.67 33.52 3.86 41.48 2.02 41.51 2.60
30 28.88 3.81 29.28 3.97 38.96 2.23 39.17 2.49
40 26.46 3.77 26.71 3.97 36.75 2.18 37.22 2.38
50 24.99 3.84 25.14 3.95 35.14 2.17 35.53 2.28
60 24.13 3.56 24.19 3.94 33.59 2.06 34.06 2.20
70 23.58 4.08 23.62 3,94 32.41 2.00 32.76 2.12
80 23.25 3.99 23.27 3.93 31.23 1.93 31.62 2.06
90 23.28 3.86 23.05 3.93 30.37 1.89 30.62 2.01
100 23.18 3.85 22.92 3.93 29.55 1.92 29.73 1.96

95% CI 95% CI 95% CI 95% CI

10 45.11 34.661 46.11 34.94! 48.26 41.801 49.02 40.29
20 39.00 26.89! 39.89 27.161 44.81 38.161 45.81 37.22
30 35.16 22.601 35.82 22.731 42.64 35.291 43.29 35.06
40 32.67 20.241 33.26 20.15! 40.35 33.161 41.14 33.30
50 31.32 18.661 31.66 18.62! 38.73 31.561 39.29 31.77
60 30.00 18.261 30.69 17.701 36.99 30.201 37.68 30.43
70 30.31 16.841 30.11 17.121 35.71 29.101 36.27 29.26
80 29.84 16.671 29.75 16.781 34.41 28.051 35.03 28.22
90 29.64 16.921 29.54 16.561 33.49 27.241 33.93 27.31
100 29.47 16.901 29.41 16.431 32.71 26.391 32.96 26.49

The numbers show a small improvement in the average availability, specially

in early periods; however, there is very small improvement at !aLer times.

The effect of providing ten spare parts for each module (Case C) is examined

next; see Table 3.6.
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Table 3.6 COMPARATIVE PERFORMANCES (CASE C; 10 SPARES)

FCFS-S FCFS-A LAIN-S LAIN-A

t E[AV] SDEV I E[AV] SDEV I E[AV] SDEV I E[AV] SDEV
II I

10 4b.56 3.23 46.40 3.83 49.53 1.80 50.00 3.42
20 36.84 3.97 37.17 4.19 46.21 2.69 46.61 3.26
30 31.17 4.01 31.46 4.24 43.27 2.80 43.30 3.08
40 27.93 3.93 28.01 4.20 40.62 2.65 40.83 2.87
50 26.03 3.90 25.93 4.15 38.47 2.54 38.80 2.66
60 24.74 4.07 24.66 4.12 36.65 2.48 37.03 2.51
70 23.67 3.97 23.89 4.10 35.16 2.36 35.45 2.40
80 23.42 4.02 23.43 4.09 33.78 2.34 34.06 2.31
90 23.06 3.77 23.15 4.08 32.62 2.22 32.83 2.22
100 23.01 3.83 22.98 4.08 31.68 2.10 31.74 2.16

95% CI 95% CI 95% CI 95% CI

10 50.89 40.241 52.91 40.281 51.50 45.551 55.65 44.35
20 43.39 30.28! 44.09 30.261 50.66 41.771 51.99 41.22
30 37.67 24.46! 38.46 24.461 47.77 38.731 48.38 .21
40 34.41 21.451 34.93 21.091 44.96 36.23 5.56 36.09
50 32.57 20.02! 32.77 19.081 42.56 34.381 43.19 34.42
60 31.47 18.341 31.45 17.87! 40.70 32.501 41.17 32.88
70 30.04 17.30! 30.65 17.131 38.98 31.201 39.41 31.49
80 29.96 16.75! 30.17 16.68! 37.65 29.91! 37.86 30.25
90 29.28 16.84! 29.88 16.41! 36.28 .951 36.50 29.17
100 29.34 16.681 29.71 16.251 35.14 28.221 35.30 28.19

A significantly greater effect on aircraft availability occurs in Case C. The

improvement in availability is specially noticeable in early times for both policies,

with the effect decreasing considerably at the end of the mission period. Note, also,

that the effect is more important in the LAIN availability. In the LAIN case, there

is a much larger relative error between the diffusion approximation and simulation

with respect to standard deviations for early times; again the standard deviation

obtained analytically (LAIN-A) noticeably exceeds the simulation value (LAIN-S).
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It is interesting to observe what happens when ten spares are allocated only to

those five modules with higher failure rates (Case D); see Table 3.7.

Table 3.7 COMPARATIVE PERFORMANCES (CASE D)

FCFS-S FCFS-A LAIN-S LAIN-A

t E[AV] SDEV E[AV] SDEV E[AV] SDEV E[AV] SDEV

10 46.95 2.44 46.99 3.98 46.17 1.83 46.11 2.90
20 36.74 3.78 37.43 4.21 42.72 2.07 42.59 2.74
30 31.32 4.27 31.62 4.24 39.80 2.19 39.97 2.63
40 28.05 3.90 28.10 4.20 37.55 2.23 37.95 2.50
50 26.12 3.67 25.98 4.15 35.62 2.30 36.22 2.36
60 24.74 4.01 24.69 1.12 34.14 2.07 34.64 2.24
70 23.81 3.95 23.90 4.10 32.91 1.99 33.24 2.17
80 23.55 3.99 23.44 4.08 31.87 1.93 32.01 2.09
90 23.49 3.84 23.16 4.08 30.79 1.91 30.94 2.03
-00 23.23 3.83 22.98 4.08 29.84 2.00 29.99 1.98

95% CI 95% CI 95% CI 95% CI

10 48.97 40.921 53.56 40.431 49.18 43.161 50.89 41.33
20 42.98 30.501 44.37 30.491 46.13 39.311 47.11 38.07
30 38.36 24.281 38.61 24.621 43.42 36.181 44.31 35.62
40 34.48 21.621 35.03 21.181 41.24 33.871 42.08 33.82
50 34.17 20.071 32.83 19.131 39.41 31.841 40.11 32.32
60 31.35 18.121 31.48 17.901 37.55 30.731 38.34 30.95
70 30.33 17.301 30.66 17.141 36.19 29.621 36.80 29.67
80 30.13 16.961 30.18 16.701 35.06 28.691 35.46 28.56
90 29.83 17.161 29.89 16.421 33.95 27.641 34.29 27.59
100 29.55 16.901 29.71 16.261 33.14 26.531 33.26 .73

In this case, the FCFS policy performs slightly better than the priority scheme

in the beginning of the mission. The implication may be that an appropriate

weighting, taking into account high failure rates, may prove to be more efficient than

the exclusive concern with the current least available module at each time. The

LAIN policy is again more efficient for later periods.
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Now suppose that all modules cost the same (not very realistic, of course), and

instead of allocating ten spares to those modules with higher failure rates, as in Case

D, five spares are introduced across the board (Case E); see Table 3.8.

Table 3.8 COMPARATIVE PERFORMANCES (CASE E; 5 SPARES)

FCFS-S FCFS-A LAIN-S LAIN-A

t E[AV] SDEV E[AV] SDEV E[AV] SDEV E[AV] SDEV

10 42.00 3.22 42.59 3.51 46.95 2.70 46.95 2.83
20 34.14 3.70 34.75 3.97 43.33 2.50 43.33 2.78
30 29.63 3.85 30.CO 4.06 40.47 2.40 40.60 2.66
40 27.03 3.80 27.12 4.04 38.30 2.29 38.58 2.51
50 25.29 3.81 25.38 4.03 36.32 2.20 36.71 2.39
60 24.27 3.86 24.33 4.01 34.92 2.21 35.16 2.29
70 23.68 3.87 23.69 4.00 33.44 2.10 33.70 2.21
80 23.43 4.03 23.32 3.99 32.30 2.03 32.51 2.14
90 23.27 3.79 23.09 3.99 31.19 1.98 31.42 2.08
100 22.99 3.66 22.96 3.99 30.22 2.02 30.44 2.02

95% CI 95% CI 95% CI 95% CI

10 47.63 36.711 48.39 36.791 50.36 43.541 51.63 42.28
20 41.20 28.071 41.32 28.191 47.38 39.261 47.92 38.74
30 35.87 23.381 36.71 23.291 44.43 36.51! 45.10 36.30
40 33.11 20.961 33.82 20.431 42.03 34.491 42.74 34.43
50 31.50 19.071 32.04 18.741 39.95 32.691 40.72 32.81
60 30.64 17.891 30.95 17.721 38.46 31.181 38.95 31.37
70 30.07 17.301 30,30 17.101 36.90 29.981 37.41 30.10
80 30.09 16.801 29.91 16.721 35.65 28.95! 36.06 28.98
90 29.53 17.021 29.67 16.491 34.45 27.931 34.86 28.00
100 29.03 16.951 29.53 16.35! 33.55 26.891 33.81 27.13

It is illustrative to observe that this new, and almost certainly less expensive,

stock plan influences each scheduling policy in a different way. In the FCFS case the

combat availability declines throughout the mission when compared to Case D,
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especially at earlier times; on the other hand, and somewhat surprisingly, LAIN

availability is slightly enhanced at all times.

Table 3.9 shows the result of submitting the system in Case E to an arbitrary

weighting consisting of wj = v/Aj i.e., a high weight for modules with high repair rate

and low failure rate, using the LAIN policy.

Table 3.9 THE EFFECT OF WEIGHTS IN CASE E

time [IGHTS NOT USED L WEIGHTS USED

10 46.9 46.8

20 43.3 43.2

30 40.6 40.5

40 38.5 38.3

50 36.7 36.5

60 35.1 35.0

70 33.7 33.5

80 32.5 32.3

90 31.4 31.4

100 30.4 30.3

Quite surprisingly, the effect of such weighting procedure is insignificant (in

fact, combat availability decreases slightly). It is necessary to understand that the

numbers in Table 3.9 were generated by setting wi=1 and w=v1/Xj, i= 1,2,..,10, in

(3.2). The result is obviously the same if the wi are set to ,/i instead of vA/),i. It is
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not clear if this fact implies that this arbitrary weighting is ineffective, or if the model

does not truly represent such strategy.

Finally, simulations using various weighting factors were run for the LAIN case,

including the procedure in which the module type selected for iepair next is that with

the least value of the product of the actual availability by the ratio failure/repair

rates. All the results showed that the combat availability is reduced, when compared

to the unweighted LAIN scheme.

In our last sample system (Case F) the parameters are modified in such a way

that the heavy traffic condition (1.2) for the diffusion approximation is barely

satisfied; see Table 3.10.

Table 3.10 CASE F; INPUT DATA

MODULE K7.5_Aivi

1 50 0.045 7.5

2 50 0.040 7.5

3 50 0.030 7.5

4 50 0.020 7.5

5 50 0.0i0 7.5

6 50 0.009 4.5

7 50 0.008 4.5

8 50 0.007 4.5

9 50 0.006 4.5

10 50 0.005 4.5
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If (1.2) is applied to the data we have

50 X F, - = 1.355.
i.1 Vi

Table 3.11 shows the computed expected values and standard deviations forAv(t) for

both the simulation (S) and the diffusion approximation (A).

Table 3.11 COMPARATIVE PERFORMANCES (CASE F)

FCFS-S FCFS-A LAIN-S LAIN-A

t E[AV] SDEV E[AV] SDEV E[AV] SDEV E[AV] SDEV

10 43.89 2.81 44.28 2.73 46.58 1.46 46.22 2.80
20 41.24 3.30 41.93 3.34 45.17 1.68 44.97 2.15
30 39.65 3.64 40.21 3.53 44.06 1.77 43.91 2.10
40 38.60 3.80 38.94 3.59 43.09 1.87 43.00 1.85
50 37.97 3.77 38.11 3.75 42.25 1.86 42.21 2.27
60 37.51 3.65 37.96 3.66 41.54 1.96 41.52 2.20
70 37.27 3.65 37.73 3.77 40.94 1.95 40.91 2.52
80 37.07 3.75 37.44 3.92 40.35 1.98 40.39 1.99
90 37.10 3.64 37.25 3.87 39.82 1.98 39.93 2.30

100 37.10 3.70 37.13 4.40 39.42 2.01 39.53 2.25

it can be noticed that the approximation provided by the diffusion model is still

very useful, especially for mean values; the (now "ger) error in standard deviation

is, again, biased upward. A case where the heavy traffic condition is violated is

investigated in Appendix D.
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The effect of supplying ten spares for each module (Case G) is examined in

Table 3.12. Once more, the effect is more important in the LAIN availability,

especially for t > 60.

Table 3.12 COMPARATIVE PERFORMANCES (CASE G; 10 SPARES)

FCFS-S FCFS-A LAIN-S LAIN-A

t E[AV] SDEV E[AV] SDEV E[AV] SDEV E[AV] SDEV

10 49.50 1.27 50.00 2.43 49.62 0.78 50.00 1.16
20 46.44 3.36 47.00 4.16 49.54 0.86 50.00 1.40
30 43.64 3.84 44.10 4.27 49.01 1.22 50.00 1.38
40 41.04 3.98 41.83 4.71 48.32 1.60 49.36 1.83
50 39.49 4.11 40.17 4.89 47.39 1.93 47.76 2.39
60 38.57 4.10 39.07 4.49 46.44 2.09 46.37 2.25
70 37.94 4.22 38.52 4.47 45.38 2.15 45.16 2.73
80 37.51 4.05 38.03 4.23 44.41 2.21 44.10 2.39
90 37.40 4.06 37.73 5.05 43.43 2.29 43.18 2.52
100 37.10 4.02 37.44 4.81 42.67 2.26 42.66 2.77
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IV. FURTHER DEVELOPMENTS

A. NON-CANNIBALIZATION

In all models considered so far it is assumed that working components

belonging to inoperative aircraft (resulting from previous failures) can be used to

substitute for modules which have just failed in another (otherwise operative)

aircraft. This circumstance is what is known as "cannibalization", and it is usually

implemented in real situations when it is necessary to maintain a high level of

combat readiness through increased availability of vital assets for a limited period of

time. As an example, the overall objective of the Chief of Naval Operations is to

obtain at least seventy-two percent of fully-mission-capable aircraft in a squadron

[Ref. l:p.4].

In this section a modification of the original "analytic" model is developed for

a situation where cannibalization is not employed. It is assumed that the time horizon

of interest is relatively small, such that the adoption of a cannibalization policy does

not affect significantly components' failure rates' .

It is further assumed that an aircraft will return to its base almost as soon as

the first vital component fails, and that no other component in this aircraft will suffer

1Experience shows that this kind of maintenance policy tends to decrease
equipment life time if utilized for long periods. The effect is related to an increase of
the individual failure rates, Ii. This fact is corroborated by this author's own
experience as head of the electronic equipments maintenance division in a Brazilian
Navy FFG (Guided Missile Frigate).
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failure until it is back in operation. This is, admittedly, a somewhat unrealistic

assumption, but the lower bound it represents may be useful to demonstrate the

dramatic role cannibalization plays in terms of increasing availability. The model

may, also, serve as a quick tool for assessing the effect of this kind of maintenance

policy. A model that supposes that degraded aircraft proceed with their mission can

also be constructed, but this is not done at this time.

Let A,,(t) denote the total number of operational aircraft at each time t, for the

non-cannibalization case. At t=0, let An,(O) =A, the number of initially deployed

aircraft.

As is the case now, a failed component renders an aircraft inoperative until it

is repaired, assuming there is no spare part in stock. Otherwise, the failed component

is substituted, and will join the appropriate queue. Let S, = 14, -. 4, be the number

of spare parts available for module i.

Anc(t) may be represented by

1

A,, (t) = A c - I#Q) x [ N g(t ) - Si l  (4.1)

where I, Ki, and Ni(t) are as defined in chapter I, and Ii(t) is the indicator

variable defined by

1, if Ni(t) > Si  (4.2)

liPt) 0 , if Ni(t) _ Si
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1. A Numerical Example

Once again, a Monte Carlo simulation model is used to validate analytical

results. The input data for the example used in this investigation are those of Table

3.2 in Chapter III.

In the simulation model, A,,(t) is updated only when a failure occurs or

when a repair is completed, after considering inventory levels. When a failure occurs,

the aircraft is brought back to the operational status if a spare exists, and the value

of A(t) remains unchanged. Otherwise, the aircraft must wait until repair

completion, and An,(t) decreases by one. When a module is repaired, A,(t) increases

by one only if the component was causing an aircraft to remain inoperative.

With respect to the equations for fli(t) in (2.4), the only necessary

modification is the use of A4,(t) (4.1) scaled by a in the place of aF(t). For the non-

cannibalization case, only the LAIN policy is examined, and the corresponding results

are compared to the usual (perfect cannibalization) plan, for both FCFS and LAIN.

The numerical example attempts to exploit a situation where the modules

show large diversity in terms of failure and repair rates, and p = 30 is used in (3.4).

Figure 4.1 displays a fairly satisfactory agreement between simulation and

"analytical" results. Numerical values for the expected value of the aircraft availability

as a function of t, tE[0,100] are shown for both cases.
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Figure 4.1 Non-Cannibalization LAIN Policy

Figure 4.2 exhibits the comparison among the various policies, showing the

evident decrease in availability when cannibalization is not employed.
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Figure 4.2 Non-Cannibalization Performance

Table 4.1 summarizes these results for t= 10,20,...,100. The numbers are

rounded to the closest integer.
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Table 4.1 NON-CANNIBALIZATION PERFORMANCE

10 46 45 36

20 44 41 31

30 43 39 30

40 41 37 29

50 40 35 29

60 39 34 29

70 38 33 29

80 37 32 29

90 36 31 29

100 36 31 29

B. EXTERNAL REPAIR (BEYOND THE CAPABILITY OF (LOCAL)

MAINTENANCE - BCM)

A more realistic characterization of the Air Unit -Repairman system must

consider the case in which failed modules require a degree of support that is beyond

the capability of local maintenance. The implication is that a certain portion of failed

modules must be sent to a higher maintenance level, returning to the local level after

an uncertain time. See Gaver, Isaacson and Pilnick [Ref. 9].

1. Pre-Local-Repair BCM

Suppose that every time a module of type j fails there is a probability 17j

that the local repair shop will not be able to service it. This implies that this module

has to be sent to another repair echelon, external to the deployed group. Denote
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these modules as BCM modules. Further assume that all BCM modules, after a

random period of time, will return to the system.

The amount of time a BCM module of type j stays outside the system (to

be repaired / substituted) is assumed to be an exp"-ential random variable with

mean 1/6j, i.e., BCM modules of type j return to the local level at a rate equal to Si.

Let K(t) be the time-dependent number of modules of type j available at the local

level at time t, with Kj(O) =K, Kj-Kj(t) BCM modules at time t, j= 1,2,...,..

For allj= 1,..,/, the probability Pj(N(t)) = Pj(t) that a module of type] fails

in the interval (tt+dt) and is repairable at the local repair facility (non-BCM),

conditional on the present state N(t) is given by

Pj(t) dt = (1 - rnj) A [Kj(t) - Nj(t) ] dt + o(dt) (4.3)

Now define ajt) K= Kj/O/la, and substitute aj(t) for aj in (2.5) for the

definition of a'v(t).

The following systems of differential equations may be written for the

approximate scaled mean of N(t), (t), and for the scaled number of modules at the

local level a(t):

d -t = AJ(G - n ~aVWt - Ajpj(t)(4)

dt

dat ) 6j(aj-ajt) - -Yrja,v(t)  (4.5)
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a. A Numerical Example

Consider the sample system depicted in Chapter III-C (Table 3.3), and

suppose that all BCM modules return to the local level at a rate 6i = 1/30, i = 1,2,...,10.

Further assume that the proportion of BCM modules of type i, 7,, is equal to 0.20 for

all i. Figlre 4.3 displays the mean aircraft availability for te[0,100], calculated

according to (4.4) and (4.5) for both the FCFS and LAIN policies. The plot includes

simulation results, and it is clear that the accuracy of the analytical model is very

acceptable for this case.

'Die correctness of the model was tested for different values of ni.

However, numerical and analytical difficulties are observed for some particular

parameter values. A possible explanation may be that the decrease in local demand

weakens the heavy traffic condition necessary for the present formulation. In

Appendix B this subject is further explored.
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Figure 4.3 Pre-Local-Repair BCM

2. Post-Local-Repair BCM

Gaver, Isaacson and Pilnick [Ref. 9] conceived an interesting modification

to the pre-local-repair BCM case. They argue that immediate consigmaent to

external repair of a failed module is, to say the least, an optimistic assumption. If

every failed module must be first submitted to the local test and repair cycle, and

only at termination it is either completely repaired or a decision for external repair

is made, they model the modified system using
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d =j(t) = Xia,'(t) - jpj(t) (4.6)
dt

d- (t) (4.7)dt 6j(cj-aj#t)) - IAj?7jPj(t)(47

a. A Numerical Example

Once more consider the system described in Table 3.3, and suppose

that 6,"1 = 30 for all i. Figure 4.4 ard 4.5 show a useful accurate agreement between

simulation and analytical results for different values of j/i.

eta =0.20
50

45. App.

40- Lm !T
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For the post-)-cal-repair case, numerical and/or analytical

complications were not observed when the model was tested under a considerable

number of parameter combinations.

eta = 0.40
50

W 30-

25

15 

.

0 4 b 5 50 60 70 80 9b 160

Figure 4.5 Post-Local-Repair BCM (17 = 0.40)
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V. OPTIMIZATION MODELS

In this chapter two simple optimization models are described for the perfect

cannibalization, non-BCM case. The models attempt to represent different decision

problems, and can be readily adapted for different situations, such as BCM. One of

the basic assumptions here is that an adaptive scheduling policy (LAIN) is used.

Every stochastic optimization problem must reflect an attitude toward risk; it

is therefore often possible to pass from one type of formulation to an equivalent one.

The models described here are designed for planning purposes, in the sense that the

decision does not depend in any way on future observations of the random vector

N(t). Such models are usually called anticipative models; see, for example, R. J.-B.

Wets [Ref. 14].

A. DEFINITIONS

In order to describe the optimization models for the combat availability

problem, a larger st of variables must be defined. The complete set of variables is

defined below:

Let

I = number of distinct mission-essential component types in each a/c;

K = initial provision of components of type i, including those installed

in the aircraft
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ci = cost of one unit of component type i;

AC  = number of aircraft initially deployed;

Si = spare parts provided for component of type i, i.e., Si=K-Ac ;

T = time horizon ;

P,,,= minimum percentage of the original number of a/c required at time

T;

s) = argmin {K(t) - Ni(t))

Av(t) = min {Ac, Ks-Ns(t)};

Ami,, = Pmi. x Ac ;

Ni(t) = number of components of type i being repaired or waiting in

queue at time t ;

fli(t) = approximation of the scaled mean of Ni(t)

2(t) = scaled variance-covariance matrix of N(t) , and

a = Ac+ 2iK i .

As was shown in chapter III, N(t) is approximately normally distributed, i.e.,

N(t) z. N(a.#(t),a. _.(t)) (5.1)

where N(t) is the vector with components N(t), and P(t) has components Pi(t),
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B. RELIABILITY MODEL

Suppose that, during the planning phase of a combat mission that is expected

to last T units of time, it has been established that a minimum percentage P,,,, of the

initial number of fully mission capable aircraft is required with high probability, r.

Then, assuming that resupply is not possible during the mission, it seems reasonable

to consider only the combat availability at time T. Further imagine that a general

stockage policy for many missions is under study, so that costs must be minimized for

this particular mission.

A general mathematical description of this problem is

min ciS i  (i)

st. P [A(T) _A ,] . r , 0< r < 1 (ii) (5.2)

Si E 10,1,2,...)

We can interpret (5.2) as a wish to minimize spares allocation cost subject to

a minimum system reliability, where the system is now viewed as the whole Air Unit.

In order to correctly employ the approximation in (5.1), it is necessary to

examine the probabilistic (or chance) constraint (ii) in (5.2) with respect to the

corresponding expression for each item. Consider

A v(7) = min IA,, ,K - Ni(7)}
i

= min {Ac, (Ac+ Si) - Ni(T)}
i

= min{Ac,(Ac+ Ss(7l)- Ns(T)}
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Now, under heavy traffic and for large enough T, so that combat availability is

determined by the module with the least availability, i.e.,

Av(T) = Ac +Ss - ,

the event Av(T) _ Avmi n can be rewritten as

(AC + Ss(T)) -Ns()(T) >_ Av.

'.Ns(T)- (Ac + Ss()) -Av.

and, using (5.1), we have approximately

[(AC+ S(73)-Av. - a.'ls(r)(T)]P[NM(3(T) (A + Ss(7 ))Av ] -z 4' ~- T
min a.LTs( 7)(I_)

where as0() is the diagonal element of the matrix 2(7) corresponding to the

module s(7).

A deterministic approximation for the model in (5.2) is, then

min j cS i

sio
St. Ss(7) >_ zra u,(o (T) + AV. + a fi(7) (T)_-Ac (5.3)

S! _ 0 ,

where zr is the th quantile of the standard normal distribution.

Note that (5.3) is a continuous approximation of the actual discrete problem

(5.2), and that, even though the constraint in (5.3) is described with a single

inequality, in practice its computation at each stage of the optimization procedure
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involves the solution of the system of differential equations used to define l(t) and

2(t).

C. EXPECTED VALUE MODEL

It is common practice in stochastic programming models to make use of

expected values when the coefficients of the decision variables are random. In the

following simple model we seek to achieve the maximum expected value of combat

availability at T, subject to a budget constraint:

max E[Av(T)]

I

st j, cS i <_ B (5.4)

Si  {0, 1,2,...}

where B is the budget.

The approximation to the objective function in (5.4)

E[Av(T)] = min (Ac, (Ac + $) - a(, (Ac+ SI) - afl(T)}

may,once again, be simplified to

under the same conditions described in the last section.
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The continuous approximation to the problem (5.4) is, then

max (AC + Ss7)- a#,(.Q(T')

I
St ci Si: B (5.5)

Si 0
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VI. CONCLUSIONS AND RECOMMENDATIONS

In this thesis several mathematical models for evaluating scheduling and spares

stockage rules in a transient dynamic combat environment are reviewed, developed

and analyzed for a situation in which a large population of modules under heavy

traffic con litions drives combat availability. Even though this paper specifically

considered an Air Unit detachment problem, it is clear that these models may be

utilized in numerous environments.

The adaptive priority policy (LAIN) was shown to considerably improve aircraft

availability when compared to a standard FCFS scheme. The modeling technique

using a diffusion approximation provides speedy solutions for a wide range of

problems, and it provides the means for ready comparison of alternative scheduling

policies, reflecting diverse organizational maintenance disciplines.

Initial results suggest that a pure priority scheme, based on the least available

item at each time, overperforms arbitrary weighting procedures. This subject must

be further explored.

The model for situations where cannibalization is nuo employed may help a

decision maker, through a quick demonstration of the aramatic effect of this policy

in terms of combat availability.

The situation in which failed modules require a degree of support that is

beyond the capability of the local echelon is readily accounted for with small
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modifications to the original model. In this thesis we describe these modifications for

the mean availability only. An area for further research is the development of

equations for the variance of these BCM systems. Another point of interest is the

development of models that take into account some mixture of pre- and post-local-

repair allocation to distant repair, as well as possible mistakes in these consignments.

The optimization models described here are an attempt to apply the analytical

models as a framework for choosing spare modules allocations in various

environments. The actual solution of these models is certainly a challenging

continuation of the present work.
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APPENDIX A. GRAPHICS FOR THE CASE STUDY

In this appendix, a series of plots are used to demonstrate graphically the

precision that is achieved by the diffusion approximation models. Cases A through

D in Chapter III-C are reproduced here. For each case, the following plots are

provided:

1. FCFS vs. LAIN - the expected combat availability for both policies is

graphed for tE[0,100]. Simulation results are also plotted, for comparison;

2. FCFS policy - lower and upper probability levels are shown, together with

the mean availability. These levels are computed as the expected value of combat

availability (E[Av(t)]) ± the standard deviation (s) times the 95th percentile of the

standard normal distribution (1.65). Simulation values are also plotted;

3. LAIN policy - as in item 2 above.
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Case B

50-

45-

40- 5N
5-

30-

25- 
F;s

20
0 lb id do 4o 5,6, ho io 40 160i

time

Sim. - App. -Sim. - App.

Figure A4. Case B; Both Policies

58



FC-FS (Case B)
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FC-FS vs. LAIN
Case D
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APPENDIX B. PRE-LOCAL-REPAIR BCM

In this appendix, some of the numerical/analytical difficulties that occur in the

pre-local-repair BCM model in (4.4) and (4.5) are summarized graphically. The

model was extensively tested by means of a very accurate ODE solver developed by

W. B. Gragg (Naval Postgraduate School) for the MATLAB-PC package [Ref. 13].

The model was tested for several combinations of values for the parameters 77

and 6. Figure 4.3 in Chapter IV displayed very accurate results when 77i= 0.20 and 6i,

= 30, i = 1,2,...,10. For some parameter values, however, even stiff ODE solvers fail

to achieve convergence at certain time intervals.

Figure B1 shows the result of applying our model to the sample system

characterized by Table 3.3 in Chapter III, with i=0.30 and 0.40, respectively. It is

clear that large discrepancies exist, even at early times, for both FCFS and LAIN

policies. A critical singularity at tz42 forces the approximation to diverge strongly for

the FCFS availability when n = 0.40.

We may conclude that a modification to the original model (4.4) and (4.5) is

necessary to account for these difficulties. We do not attempt to investigate these

modifications in this study.
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APPENDIX C. DIFFUSION APPROXIMATION ROUTINE

SUBROUTINE DIFFUS (NTIME,MAXTIM,AVERAG,STDDEV,
& DMEAN,DSTD,ITYPE)
INTEGER QUANT
PARAMETER (QUANT = 10)
INTEGER NTIME,MAXTIM,ITYPE
REAL AVERAG(NTIME),STDDEV(NTIME)
REAL DMEAN(NTIME,QUANT),DSTD(NTIME,QUANT)

........................ MODEL VARIABLES
INTEGER ONREP,DOWN(QUANT),K(QUANT)
INTEGER NUMMIN,AC,P,AV,TOTQU,AVMIN
REAL LB(QUANT),NU(QUANT),W(QUANT)
COMMON/MODEL1/ONREP,DOWN, K, NUMMIN,AC,

& P,AV,TOTQU, AVMIN
COMMON/MODEL2/LB,NT J,W

INTEGER INOP(QUANT)
COMMON/TIMEO/INOP

....................... POLICY VARIABLE
INTEGER POLTYP
COMMON/POLICY/POLTYP

....................... DIFFUSION VARIABLES
REAL MU(QUANT),ALPH(QUANT),YO(QUANT),ACNORM,XO
COMMON/APPROX/MU,ALPH,Y0,ACNORM,XO

C ....................... LOCAL VARIABLES
INTEGER I,J,TSTEP
REAL A

* MAIN PROGRAM *

....................... SCALING OF INPUT PARAMETERS
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A = REAL(AC)
DO 10 I=IQUANT

A = A + REAL(K(I))
10 CONTINUE

ACNORM = REAL(AC) / A
POLT X"P = ITYPE
DO 20 I = 1,QUANT

ALPH(I) = REAL(K(I)) / A
MU(I) = NU(I) / A
YO(I) = REAL(INOP(I)) / A

20 CONTINUE
........................ COMPUTE TIME STEP
TSTEP = MAXTIM/NTIME

........................ CALL ODE SOLVER AND RETURN THE VALUES
* OF THE MEAN AND STANDARD DEVIATION FOR
* COMPONENT WITH LEAST AVAILABILITY AT
* EACH TIME, FOR TYPE "ITYPE"

CALL DFMEAN(NTIME,MAXTIM,AVERAG,STDDEVADMEAN,DSTD)
RETURN
END

SUBROUTINE DFMEAN(NTIME,MAXTIM,AVERAG,
& STDDEVA,DMEAN,DSTD)

...................... LOCAL ENVIRONMENT
INTEGER QUANTMXPARM,MXSTEP,METHOD
REAL TOLHINIT
PARAMETER ( QUANT = 10 )
PARAMETER ( MXPARM = 50 )
PARAMETER ( MXSTEP = 3000 )
PARAMETER ( METHOD = 1 )
PARAMETER ( TOL = 1.0E-5)
PARAMETER ( HINIT = 1.OE-3)

...................... INPUT/OUTPUT PARAMETERS
INTEGER NTIME,MAXTIM
REAL AVERAG(NTIME),STDDEV(NTIME),A
REAL DMEAN(NTIME,QUANT),DSTD(NTIME,QUANT)

........................ MODEL VARIABLES
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INTEGER ONREP,DOWN(QUANT),K(QUANT)
INTEGER NUMMIN,AC,P,AV,TOTQU,AVMIN
REAL LB(QUANT),NU(QUANT),W(QUANT)
COMMON/MODEL1/ONREP,DOWN,K&NUMMIN,AC

& PAV,TOTQU,AVMIN
COMMON/MODEL2/LB,NU,W

..............DIFFUSION VARIABLES
REAL MU(QUANT),ALPH(QUANT),YO(QUANT),ACNORM,XO
COMMON/APPROX/MU,ALPH,YO,ACNORM,XO

............. LOCAL VARIABLES
INTEGER IDO,ISTEP,I,J,INTIME,IMIN
REAL AMAT(1, 1),PARAM(MXPARM)
REAL FCN,F.CNJ
REAL X,XEND,OK(QUANT),AVNOW,Y(QUANT+ QUANT*QUANT)

EXTERNAL FCN,FCNJ,IVPAG,SSETISMIN

* y(l), y(2), ... , Y(quant) represent actual values for the scaled means.
* Y(quant + 1), y(quant + 2),..., Y(quant + quant*quant) are a vector representation
* of the variance-covariance matrix in column form.

............ Set parameters for the ODE solver
CALL SSET(MXPARM,0.0,PARAM, 1)
PARAM(1) = HINIT
PARAM(4) = REAI(MXSTEP)
PARAM(12) = REAL(METHOD)

INTIME = M kXTIM / NTIME
............ Initialize queues and set Initial time

DO 10 I=1,QUANT
Y(I) = YO(I)

10 CONTINUE
DO 15 I= 1,QUANT*QUANT

Y(QUANT+I) = 0.0
15 CONTINUE

IDO=1
............. INTEGRATE SYSTEM OF ODE
DO 200 ISTEP = NINT(XO) + INTIME,MAXTIM,INTIME

XEND =REAL(ISTEP)
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CALL IVPAG(IDO,QUANT+ QUANT*QUANTFCN,FCNJ,AMAT,
& X,XEND,TOL-,PARAM,Y)

DO 100 I=1,QUANT
IF(Y(I).LT.O.0) Y(I) = 0.0
OK(I) = REAL(K(I)) - Y(I)*A

100 CONTINUE
..............FIND COMPONENT WIHLEAST AALBLT

IMIN = ISMIN(QUANTOK,1)
....................................... FIND PRESENT AVAILABILITY

AVNOW = REAL(AC)
IF(OK(IMIN) .LT. AVNOW) AVNOW = OK(IMIN)
AVERAG(ISTEP/INTIME) = AVNOW

........................................ COMPUTE STANDARD DEVIATION
STDDEV(ISTEP/INTIME) =SQRT(ABS(A*Y(IPOS(IMIN,IMIN))))
W;RITE(1 1,11 1)ISTEP,(K(I)-Y(I) *A, = 1,QUANT)
WRITE( 11,11 1)ISTEP,(SQRT(ABS(A*Y(IPOS(I,I)))), = 1,QUANT)

111 FORMAT(1X,13,10(1X,F5.1))
DO 150 I=1,QUANT

DMEAN(ISTEP/INTIME,I) = K(I) - Y(I)*A
DSTD(ISTEP/INTIME,I) = SQRT(ABS(A*Y(IPOS(I,I))))

150 CONTINUE
200 CONTINUE

........................................ RELEASE WORKSPACE
IDO=3
CALL IVPAG(IDO,QUANT+ QUANT*QUANTFCN,FCNJ,AMAT,

& X,XEND,TOLPARAM,Y)
RETURN
END

ISUBROUTINE FCN(N,X,Y,YPRIME)

INTEGER N
REAL X,Y(N),YPRIME(N)

INTEGER QUANT
PARAMETER (QUANT = 10)

........................................ MODEL VARIABLES
INTEGER ONREP,DOWN(QUANT),K(QUANT),NUMMIN,AC
INTEGER P,AVTOTQU,AVMIN
REAL LB(QUANT),NU(QUANT)PW(QUANT)
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COMMON/MODEL1/ONREP,DOWN,K,NUMMIN,AC
& P,AV,TOTQU,AVMIN
COMMON/MODEL2/LB,NU,W

............. DIFFUSION VARIABLES
REAL MU(QUANT),ALPH(QUAN ,T),YO(QUANT),ACNORM,XO
COMMON/APPROX/MU,ALPH,YO,ACNORM,XO

............. POLICY VARIABLE
INTEGER POLTYP
COMMON/POLICY/POLTYP

....LOCAL VARIABLES
R-EAL .PJ(QUANT),PSUM,ANOW,Q(QUANT)
REAL B(QUANT),Hl(QUANTQUANT),H(QUANTQUANT)
REAL SUMHS(QUANTl),SUMPMU
INTEGER IMIN,IPOS,I,J,L

............. Determine availability (AVNOW)
IMIN = -1
AVNOW = ACNORM
DO 10 I= 1,QUANT

IF ((ALPH(I)-Y(I)) .LT. AVNOW) THEN
AVNOW = ALPH(I)-Y(I)
IMIN =I

END IF
10 CONTINUE

PSUM =0.0
DO 25 1 =1,QUANT
......... ....FCFS CASE

IF(POLTYP .EQ. 2) THEN
PJ(I) = Y(I)/MU(I)

...LAIN CASE
...ELS E iF(POLT YP .EQ. 4) THIEN

PJ(I) = (W(I)/MU(I)) / (ALPH(l)-Y(I))**P
ELSE

WRITE(**)' ERROR IN POLICY TYPE'
STOP

END IF
PSUM = PSUM + PJ(I)
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25 CONTINUE
............. COMPUTE ADAPTIVE PRIORITY (Q(i))
DO 27 I=1,QUANT

IF(PSUM .NE. 0.0) THEN
Q(I) = PJ(I) / PSUM

ELSE
Q(I) = 1.0 / REAL(QUANT)

END IF
27 CONTINUE

...... 6........Compute scaled means
DO 30 J = 1,QUANT

YPRIME(J)=LB(J) * AVNOW - (MU(J) *Q(J))

30 CONTINUE
.............. Compute scaled variance-covariance
SUMPMU = 0.0
DO 50 I=1,QUANT

SUMPMU = SUMPMU + (Q(I)/MU(i))
50 CONTINUE

DO 200 1I=1,QUANT
B(I) = LB(I)*AVNOW+ MU(I)*Q(I)*(1.0+2.0*Q(I)

& *(MU(I)*SUMPMU 1.0))
IF(POLTYP .EQ. 2) THEN

...... .. ..... FCFS
IF(Y(I) .NE. 0.0) THEN

H1(I,I) =(-MU(I)/Y(I)) * (Q(I)*(1.0-Q(I)))
ELSE

H1(I,I) =(-1.0) * (Q(I)*(1.0-Q(I)))
END IF

ELSE
........ ....LAIN CASE

Hi I1,) = (-MU(I) *REA(P)/(ALPH(I)-Y(I)))
& *(Q(I)*(IO0Q(I)))

END IF
DO 100 J =1,QUANT

IF(J .NE. 1) THEN
IF(POLTYP .EQ. 2) THEN

............. FCFS CASE
IF(Y(I) .NE. 0.0) THEN

H1(I,J) = (MU(I)/Y(I))* Q(I)*Q(J)
ELSE

HI(Ij) = Q(I) * Q(J)
--ND IF

ELSE
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........................ LST AV
H1(IJ) = (MU(I)*REAL(P)/(ALPH(I)-Y(I)))

& * Q(I) * Q(J)
END IF

END IF
100 CONTINUE
200 CONTINUE

DO 400 I= 1,QUANT
SUMHS(I) = 0.0
DO 300 J= 1,QUANT

IF((IMIN .GT. 0).AND. (J .EQ. IMIN)) THEN
H(I,J) = H1(I,J) - LB(I)

ELSE
H(I,J) = Hl(I,J)

END IF
SUMI-IS(I) = SUMHS(J) + H(I,J)*Y(IPOS(I,J))

300 CONTINUE
400 CONTINUE

DO 600 I= 1,QUANT
YPRIME(IPOS(I,I)) = B(I) + 2.0 * SUMHS(I)
DO 500 J= 1,QUANT

IF(J .NE. I) THEN
YPRIME(IPOS(I,J)) = 0.0
DO 450 L= 1,QUANT

YPRIME(IPOS(I,J)) = YPRIME(IPOS(I,J)) +
& H(I,L)*Y(IPOS(J,I.)) + H(J,L)*Y(IPOS(I,L))

450 CONTINUE
END IF

500 CONTINUE
600 CONTINUE

DO 700 I= 1,QUANT
IF(Y(I) .LT. 0.0) Y(I) = 0.0

700 CONTINUE
RETURN
END

************ ******************,. **********************************c****

INTEGER FUNCTION IPOS(I,J)

* This function maps matrix-like indices to the vector locations in Y

INTEGER I,J,QUANT
PARAMETER (QUANT = 10)
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IPOS = QUANT + I + (J-1) *QUANT

RETURN
END
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APPENDIX D. HEAVY TRAFFIC CONDITION

In this appendix we show that if the heavy traffic conditions in (1.2) do not hold,

the diffusion approximation model is profoundly degraded. Consider the sample

system described in Table ID. Applying (1.2) to the data yields

10 0.85 < 1.
50x- 51

i-1 L'i

Table 1D INPUT DATA

MOLE ELIKZ _I

1 50 0.005 5.0

2 50 0.004 5.0

3 50 0.003 5.0

4 50 0.002 5.0

5 50 0.001 5.0

6 50 0.009 2.5

7 50 0.008 2.5

8 50 0.007 2.5

9 50 0.006 2.5

10 50 0.005 2.5

The heavy traffic condition is obviously violated and we want to verify how this

situation will influence the accuracy of the diffusion model. Figure 1D displays the
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expected value of the combat availability for t between 0 and 100. We can see that

the analytical results show a wide valiability when compared to the simulation.

LAIN Policy
55

50-

45

40-

w35

30-

25

20
0 10 20 S 4D 5 60 70 80 90 100

time

I-n -A. ,
Figure 1D. LAIN Policy (Mean)
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Figure 2D shows that the performance with respect to the calculation of

variances is extremely poor.

LAIN Policy
3.5.
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2 -..

0 -5 \\
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Figure 2D. LAIN Policy (Standard Deviation)
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